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Trustworthiness, and Privacy

Motivated by challenges associated with securities lending, the
mechanism underlying short selling of stocks in financial markets
» Consider allocation of a
scarce commodity in settings
in which privacy concerns or
> 9 demand uncertainty may be in
(¢ )ﬁ conflict with truthful reporting

» Want to construct a privacy
protecting allocation
mechanism that motivates
truthful reporting without
sacrificing too much utility
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» Lender distributes up to V shares to n clients over time horizon T

» At each time t, client / draws from a joint distribution over usages
and requests, Qi(ui, riy), but only request is visible to lender

» Lender chooses share allocation S; = {s;} s.t. > ;s < V

» Client’s payoff is number of shares actually used, and lender’s
utility for allocation rule Ais:

V(A) = 2_iEq,almin(A(r, ..
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Table 1: Sample Truthful Distribution Table 2: Sample Untruthful Distribution
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Optimal Allocation Rule

Given knowledge of Q;, the lender can compute the posterior
distribution Q;(u;|r;) on the true demand u; given r;, via Bayes’ rule:
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Algorithm 1 Greedy Allocation Rule

Input: n, {Qj(Ui|f,‘)},'€[n], vV
Output: feasible allocation S = {s;}.
procedure GREEDY(n, { Q;(u;|r) }icp, V)
Initialize s; = 0, Vi. > number of shares allocated to client /
fort=1...Vdo
Let i* = argmax; Ti(s; + 1|r)
update s; < s; + 1
end for
end procedure

Theorem: The allocation returned by Greedy maximizes the ex-
pected payoff for the lender: For S the allocation output by greedy:

Searg max Vv(S)= ZEQI(UM)[min(S,', uj)

Dominant-Strategy Truthfulness

Given that the lender is solving the allocation problem optimally for
the reported Q distributions, truth telling is a dominant strategy

Theorem: Fix a set of choices Q_; and reports r_; for all clients
other than /, and a realization of client /’'s usage u; ~ U;. Let Q,-T
denote the truthful strategy Q/ (ri|u;) = 1, and let Q;(r;|u;) denote
any other strategy. Let A denote the lender’s optimal allocation.
Then: _ _

va(Q) < va(Q)
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Private Auction Formulation

» Optimal allocation policy can be implemented as a virtual
ascending auction among clients

» Bidders (clients) have decreasing marginal valuation functions for
up to U units of each good (stock)
» We modify auction to guarantee joint differential privacy by
1. Reporting number of bids placed so far with a differentially
private estimator
2. Allowing the algorithm to stop early
3. Running the auction with V — E shares, where E corresponds
to error of differentially private bid counter

» Then, truthful reporting is still an approximately dominant strategy

» Finally, if clients are allowed to adapt strategies with time, joint
differential privacy enforces truthfulness as an approximately
dominant strategy and guarantees near optimality

Theorem: Let A be a private auction with appropriate values of
U, V,eand p such that Ais (¢, 5/T)-JDP with ¢ = O(¢/v/T) and
outputs S such that E[V(S)] > (1 — p)OPTy — p. Take 3, p such
that /3 + (1 — B)p < 82/T. Then for a (1 — B) fraction of the n
clients i, let L! denote the truthful strategies, and let L! be any
other set of strategies. Then a private greedy allocation rule for
the private auction satisfies:
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va(L,) = (1 - p)OPTy — pT,
where OPT, denotes the lender’s optimal utility.
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