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Motivation

Motivated by challenges associated with securities lending, the
mechanism underlying short selling of stocks in financial markets

I Consider allocation of a
scarce commodity in settings
in which privacy concerns or
demand uncertainty may be in
conflict with truthful reporting

I Want to construct a privacy
protecting allocation
mechanism that motivates
truthful reporting without
sacrificing too much utility

Model

I Lender distributes up to V shares to n clients over time horizon T
I At each time t , client i draws from a joint distribution over usages

and requests, Qit(uit , rit), but only request is visible to lender
I Lender chooses share allocation St = {sit} s.t.

∑
i sit ≤ V

I Client’s payoff is number of shares actually used, and lender’s
utility for allocation rule A is:

v(A) =
∑

i EQit ,A[min(A(r1, . . . , rn;Q1, . . . ,Qn)i ,uit)]

Table 1: Sample Truthful Distribution
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Table 2: Sample Untruthful Distribution
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Optimal Allocation Rule

Given knowledge of Qi , the lender can compute the posterior
distribution Qi(ui |ri) on the true demand ui given ri , via Bayes’ rule:

Qi(ui |ri) =
Qi(ri |ui)Ui(ui)∑
u′ Q(ri |u′)Ui(u′)

Algorithm 1 Greedy Allocation Rule

Input: n, {Qi(ui |ri)}i∈[n],V
Output: feasible allocation S = {si}.
procedure GREEDY(n, {Qi(ui |ri)}i∈[n],V )

Initialize si = 0, ∀i . . number of shares allocated to client i
for t = 1 . . .V do

Let i∗ = argmaxiTi(si + 1|ri)
update si ← si + 1

end for
end procedure

Theorem: The allocation returned by Greedy maximizes the ex-
pected payoff for the lender: For S the allocation output by greedy:

S ∈ arg max
S:
∑

i si=V
v(S) =

∑
i

EQi(u|ri)[min(si ,ui)]

Dominant-Strategy Truthfulness

Given that the lender is solving the allocation problem optimally for
the reported Q distributions, truth telling is a dominant strategy

Theorem: Fix a set of choices Q−i and reports r−i for all clients
other than i , and a realization of client i ’s usage ui ∼ Ui . Let QT

i
denote the truthful strategy QT

i (ri |ui) = 1ri , and let Qi(ri |ui) denote
any other strategy. Let A denote the lender’s optimal allocation.
Then:

v i
A(Qi) ≤ v i

A(Q
T
i )

Private Auction Formulation

I Optimal allocation policy can be implemented as a virtual
ascending auction among clients

I Bidders (clients) have decreasing marginal valuation functions for
up to U units of each good (stock)

I We modify auction to guarantee joint differential privacy by
1. Reporting number of bids placed so far with a differentially

private estimator
2. Allowing the algorithm to stop early
3. Running the auction with V − E shares, where E corresponds

to error of differentially private bid counter
I Then, truthful reporting is still an approximately dominant strategy
I Finally, if clients are allowed to adapt strategies with time, joint

differential privacy enforces truthfulness as an approximately
dominant strategy and guarantees near optimality

Theorem: Let A be a private auction with appropriate values of
U,V , ε and ρ such that A is (ε′, β/T )-JDP with ε′ = Õ(ε/

√
T ) and

outputs S such that E [V (S)] ≥ (1 − ρ)OPTV − ρ. Take β, ρ such
that

√
β + (1− β)ρ ≤ β2/T . Then for a (1 − β) fraction of the n

clients i , let Lt
i∗ denote the truthful strategies, and let Lt

i be any
other set of strategies. Then a private greedy allocation rule for
the private auction satisfies:

vi(L1
i , . . . ,L

n
i ) ≤ e2εvi(L1

i∗, . . . ,L
n
i∗) + 2βUT + eε

β2

1− β2/T

vA(Lt
i∗) ≥ (1− ρ)OPTV − ρT ,

where OPTV denotes the lender’s optimal utility.
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