Multiaccurate Proxies for Downstream Fairness

Emily Diana (ediana@wharton.upenn.edu)
with Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi
University of Pennsylvania

Algorithmic Fairness in the News

- **Algorithmic fairness aims to understand and prevent bias in machine learning models.**
- Often one wants to train a model that is fair with respect to a sensitive feature that has been redacted from training data.
- Could be due to legal or policy reasons:
 - In the United States it is against the law to use race as an input to consumer lending models.
- Many large consumer-facing organizations choose not to ask their customers for such information.

How do we model a fair model with respect to race if we don’t have data about race?

Algorithmic Fairness in the Literature

- Inherent Trade-Offs
- In real applications, either of these assumptions can fail (or can become false due to
- Our theoretical and empirical results demonstrate that proxies trained using our methods can stand in as near perfect substitutes for sensitive features in downstream training tasks.
- Results crucially depend on the assumption that the data the Proxy Learner uses to train its proxy is distributed identically to the data that downstream learner uses.
- In real applications, either of these assumptions can fail (or can become false due to distribution shift, even if they are true at the moment the proxy is trained).

Research Question

- Algorithmic fairness aims to understand and prevent bias in machine learning models.
- Often one wants to train a model that is fair with respect to a sensitive feature that has been redacted from training data.
- Could be due to legal or policy reasons:
 - In the United States it is against the law to use race as an input to consumer lending models.
- Many large consumer-facing organizations choose not to ask their customers for such information.

How do we model a fair model with respect to race if we don’t have data about race?

Framework

- Data domain Ω divided into K groups:
 $$\Omega = \{x \in \mathbb{R}^d : y, z \in \{0, 1\}\} = \{x \in \mathbb{R}^d : y, z \in \{0, 1\}\}$$

- Proxy model class $\mathcal{F} : \mathbb{X} \to \mathbb{R}^K$.
- Proxy $\tilde{y} \in \mathcal{F}$: vector of K real numbers ($\tilde{z}_1, \ldots, \tilde{z}_K$).
- Downstream model class $\mathcal{H} : \mathbb{X} \to \mathbb{R}^K$.

Proxy Learner aims to find proxy \tilde{y} such that if a Downstream Learner trains a model h that is fair with respect to z, h is also fair with respect to \tilde{y}.

Experiments: Overview

- Simulating a downstream learner, we train a model to be fair with respect to four representations of the sensitive feature and evaluate its performance:
 - True Labels: Z
 - Baseline Proxy: Logistic regression of Z on X
 - γ-Proxy: Solution to Program (1) with squared error objective
 - MSE Proxy: Solution to Program (1) with squared objective

Conducted experiments on American Community Survey (ACS) datasets and tasks from [2].

Experiments: ACS Data

- **Figure:** Proxy results on the ACSIncome dataset with race as sensitive feature
- **Figure:** Proxy results on the ACSIncome dataset with age as sensitive feature
- **Figure:** Proxy results on the ACSIncome dataset with sex as sensitive feature

Conclusion

- We have shown that it is possible to efficiently train proxies that can stand in for missing sensitive features to effectively train downstream classifiers subject to a variety of demographic fairness constraints.
- Our theoretical and empirical results demonstrate that proxies trained using our methods can stand in as near perfect substitutes for sensitive features in downstream training tasks.
- Results crucially depend on the assumption that the data the Proxy Learner uses to train its proxy is distributed identically to the data that the downstream learner uses.
- In real applications, either of these assumptions can fail (or can become false due to distribution shift, even if they are true at the time the proxy is trained).

Selected References

1. **[1]** Aleksandar Nikolov, Carsten Sinno Janson, and Paul Grigorescu. "Adversarial training for fairness against individual attributes."